Тип задания: 11 (Текстовая задача).
Id-16. Задание № 11. По двум параллельным железнодорожным путям навстречу друг другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 75 км/ч и 30 км/ч. Длина пассажирского поезда равна 750 метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо пассажирского поезда, равно 36 секундам. Ответ дайте в метрах.
Решение:
Пусть x — длина скорого поезда.
Переведем секунды в часы
36 секунд = \frac{36}{3600} часа = 0,01 часа.
Если бы пассажирский поезд стоял, то за 0,01 часа скорый поезд прошел бы расстояние, равное сумме длин пассажирского и скорого поездов, т.е.
0,75+x=75\cdot 0,01.
Так как за это же время (0,01 часа) пассажирский прошел расстояние 30\cdot 0,01 км, то скорый поезд за 0,01 часа прошел расстояние, равное сумме длин пассажирского и скорого поездов минус расстояние, пройденное пассажирским поездом, т.е.
0,75+x-30\cdot 0,01=75\cdot 0,01.Из последнего уравнения находим x 0,75+x-0,3=0,75. x=0,3 км = 300 метров.
Ответ: 300.
Источник: ЕГЭ 2017. Математика. Профильный уровень. 30 вариантов типовых тестовых заданий и 800 заданий части 2/ под. ред. И.В. Ященко. — М.: Издательство «Экзамен», издательство МЦНМО, 2017. -215 с. (Серия «ЕГЭ. 30 вариантов. Типовые тестовые задания»). Вариант 4. Задание 11.
Тип задания: 9 (Вычисления и преобразования). Id-36. Задание № 9. Найдите значение выражения Решение:…
Тип задания: 5 (Решение уравнений). Id-35. Задание № 5. Найдите корень уравнения Решение: Ответ:…
ЕГЭ. Математика. Профильный уровень: типовые экзаменационные варианты: 36 вариантов / под. ред. И.В. Ященко. -…
Решебник. ОГЭ 2021. Математика. Новая модель. И.В. Ященко. 36 вариантов. ФИПИ. ОГЭ. Математика: типовые экзаменационные…
"Математик – это тот, кто умеет находить аналогии между утверждениями. Лучший математик – кто устанавливает…